Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.

نویسندگان

  • Jun-Rong Chen
  • Tien-Chang Lu
  • Yung-Chi Wu
  • Shiang-Chi Lin
  • Wen-Feng Hsieh
  • Shing-Chung Wang
  • Hui Deng
چکیده

Wide bandgap semiconductors are promising materials for the development of polariton-based optoelectronic devices operating at room temperature (RT). We report the characteristics of ZnO-based microcavities (MCs) in the strong coupling regime at RT with a vacuum Rabi splitting of 72 meV. The impact of scattering states of excitons on polariton dispersion is investigated. Only the lower polariton branches (LPBs) can be clearly observed in ZnO MCs since the large vacuum Rabi splitting pushes the upper polariton branches (UPBs) into the scattering absorption states in the ZnO bulk active region. In addition, we systematically investigate the polariton relaxation bottleneck in bulk ZnO-based MCs. Angle-resolved photoluminescence measurements are performed from 100 to 300 K for different cavity-exciton detunings. A clear polariton relaxation bottleneck is observed at low temperature and large negative cavity detuning conditions. The bottleneck is suppressed with increasing temperature and decreasing detuning, due to more efficient phonon-assisted relaxation and a longer radiative lifetime of the polaritons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities

Wide bandgap semiconductors are attractive candidates for polariton-based devices operating at room temperature. We present numerical simulations of reflectivity, transmission and absorption spectra of bulk GaAs, GaN and ZnO microcavities, in order to compare the particularities of the strong coupling regime in each system. Indeed the intrinsic properties of the excitons in these materials resu...

متن کامل

Exciton polaritons in single and coupled microcavities

Recent work on strong coupling exciton}polariton phenomena in single and coupled microcavities is presented. We describe experiments for single cavities where the strong coupling nature of the excitations manifests itself. It is also shown that coupled cavities enable optically induced coupling between macroscopically separated exciton states to be achieved, and polaritons with strongly anisotr...

متن کامل

Towards R-Space Bose-Einstein Condensation of Photonic Crystal Exciton Polaritons

Coupled states of semiconductor quantum well (QW) excitons and photons in a two dimensional (2D) periodic lattice of microcavities are analyzed theoretically, revealing allowed bands and forbidden gaps in the energy spectrum of exciton polaritons. Photonic crystal exciton polaritons have spatially uniform excitonic constituent set by flat QWs, but exhibit periodic Bloch oscillations in the plan...

متن کامل

On the nature and dynamics of low-energy cavity polaritons

Low-energy polaritons in semiconductor microcavities are important for many processes such as, e.g., polariton condensation. Organic microcavities frequently feature both strong exciton-photon coupling and substantial scattering in the exciton subsystem. Low-energy polaritons possessing small or vanishing group velocities are especially susceptible to the effects of such scattering that can ren...

متن کامل

Quantum theory of spin dynamics of exciton-polaritons in microcavities.

We present the quantum theory of momentum and spin relaxation of exciton-polaritons in microcavities. We show that giant longitudinal-transverse splitting of the polaritons mixes their spin states, which results in beats between right- and left-circularly polarized photoluminescence of microcavities, as was recently experimentally observed [Phys. Rev. Lett. 89, 077402 (2002)]]. This effect is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2011